RTCA has announced the formation of the RTCA Standards Development Organization (SDO) to continue its 83-year stellar track record of producing timely and robust standards and guidance documents to ensure interoperability of aviation systems and equipment, encourage innovation, and serve as the basis for meeting Federal Aviation Administration (FAA) regulations.

“We are excited that RTCA has made the transition from being utilized by the FAA as a Federal Advisory Committee (FAC) to an independent SDO, with on-going FAA involvement,” stated RTCA President Margaret Jenny. “We are also continuing to work closely with our European counterpart, EUROCAE, to develop joint standards.”

continued on page 2
The change came as a result of the May 29, 2018 expiration of the umbrella agreement (Charter) under which RTCA operated. In lieu of renewing the Charter for the Program Management Committee and the nearly 20 Special Committees (SCs), the Department of Transportation and the FAA have recognized that RTCA will continue to produce performance-based standards as an independent SDO.

“Mindful of the FAA’s desire to continue without interruption, the production of high-quality standards and guidance materials, RTCA is committed to a seamless transition,” explained Jenny.

Under the new SDO, industry leadership of SCs and their working groups are remaining the same. Leaders within the FAA and RTCA have worked to define the ongoing, and very important relationship between RTCA and the FAA on the Program Management Committee and the SCs.

According to Jenny, “the output of the committees is even more important now as we turn our attention to providing risk-based performance standards for unmanned aerial systems (UAS) and other new entrants as they are integrated into the airspace.”

RTCA’s time-honored processes and committee leadership guidance will ensure that all the work of the committees is conducted in a manner that is compliant with U.S. anti-trust laws, and continues to reflect the high standard of quality that industry expects. The transition to an independent standards organization will minimize changes to processes and will be mostly transparent to the committee members.

“RTCA remains committed to working with government and industry to advance the state of aviation, encourage innovation, expand the marketplace of ideas and solutions, and facilitate US leadership in a manner that maintains the enviable safety record of aviation in the United States,” concluded President Jenny.
We welcome RTCA’s decision to transition to an independent standards development organization that will continue its critical standards development role. As the leaders of the Aerospace Industries Association (AIA) and the General Aviation Manufacturers Association (GAMA), we strongly support the important function RTCA has served for the global aviation industry over 83 years in developing standards for aircraft avionics, air traffic control interoperability, NextGen, and aviation safety and security.

The collaborative and consensus process for the Program Management Committee (PMC) and the Special Committees (SCs) have long served a unique role in advancing performance and technical standards for the aviation industry, which serve as the basis for FAA regulations and compliance. The hundreds of aviation standards held by RTCA are extensively used across all our member aviation products for safety and interoperability. For example, the current standards for civil aviation’s use of the Global Position System (GPS) were developed and maintained by RTCA committees, as well as standards for Traffic Collision Avoidance Systems (TCAS), aircraft transponders, Automatic Dependent Surveillance Systems (ADS-B), and data link services. As RTCA members can attest, numerous other standards are used across our industry to manage software assurance and address human factors.

AIA, GAMA, and our individual members are the strongest supporters of RTCA’s processes for the PMC and SCs which provide FAA with recommendations and technical standards necessary for the safety and growth of our national aviation system. Our associations and many of our member companies have served on the RTCA Board, PMC and various Special Committees and Task Forces, and we look forward to working with RTCA for a long time to come.
In early 2017, the NextGen Advisory Committee (NAC) elected to focus on improving operations and implementing NextGen in the Northeast Corridor (NEC). For the past 16 months, a task group under the NAC has regularly met to define goals, specify initiatives and milestones, and address risks for improving the NEC.

In a June 2017 report to the NAC, the NEC team identified its goals for the Northeast Corridor, in terms of three tiers of targeted operational benefit:

- Tier 1: Improve execution of today’s operation in the NEC
- Tier 2: Operate today’s flights more efficiently
- Tier 3: Grow the capacity and schedule

To achieve these objectives, the NEC team members identified the highest value capabilities as 1) deconflicting airports, primarily in the New York area; 2) improving airspace and airport throughput; and 3) improving flow management. The group also identified managing operations in adverse weather as a critical area of focus.

With these capabilities in mind, industry participants in the NEC subsequently further specified their ten highest priority operational needs for the NEC. The FAA and industry have collaborated to identify initiatives and milestones for the NEC that are geared towards impacting these operational needs.

In October 2017, the NEC team identified an initial series of initiatives with milestones for the NEC for an initial 18-month period (October 2017 to March 2019). These initiatives through March 2019 are a first effort to enhance throughput, deconflict airports and enhance flow management. Implementations focused on these initiatives are underway today in the NEC.

The focus on the NEC has provided an opportunity for industry and the FAA to collaboratively “lean in” to NextGen. The NEC team has noted that many capabilities are coming together to deliver NextGen, and the NEC is an early implementation site for many of these. The intersection and integration of these individual capabilities will drive the NEC and the NAC overall towards NextGen operations and benefits. Along the way, the NEC team has identified numerous risks and challenges to improving performance in the Northeast. Two risk areas of focus for the NEC are community engagement and the impact of the mix of navigation equipage.

![Diagram: FOCUS ON THE NORTHEAST CORRIDOR](image)
The NextGen Advisory Committee (NAC) voted in 2017 to make the Northeast Corridor (NEC) a priority region in the FAA’s ongoing implementation of NextGen. The resulting two-phase process will first define success metrics for the tasking. The second phase will “define joint implementation commitments for the NEC, including government and industry milestones”. The question at the forefront of the NAC’s work is determining what collective work can be accomplished to implement a collective set of FAA, airport, operator, and community initiatives that leverage the 2013 NextGen prioritization criteria.

“The NEC has a large effect on the rest of the National Airspace System (NAS) in terms of performance,” said NEC Co-Chair Mark Hopkins, Director of Air Traffic Management, Delta Air Lines. “With so many airlines operating in the NEC and the associated number of flights, the effects of operations and delays ripple through the entire system. Additionally, the structural constraints in the NEC airspace can be incrementally addressed through a sequential process that first builds a solid foundation of capabilities that support advanced traffic flow management capabilities and procedures going forward.”

“We have done the easy ‘low hanging fruit’ ideas already,” added Co-Chair Warren Christie, Senior Vice President of Safety, Security, and Training, JetBlue Airways. “This is tough, technical, follow-through type work. We’re changing user work flow processes and changing the culture of the FAA, pilots and operations systems.” Despite that, he says he’s confident that the NEC Team is well-positioned to make massive improvements in the Northeast and NAS as a whole.

When asked about what to expect next from the NEC Team, Co-Chair Steve Brown, Chief Operating Officer, National Business Aviation Association, said to look for continued building of industry relationships to facilitate the implementation of NextGen in the NEC, first with public outreach for infrastructure approvals, and second in a synchronized push with the entire industry to update equipage. And in setting the NEC as the first step in NextGen implementation, the industry is proving it can take on the challenge. “Implementing NextGen in this most demanding environment will elevate its value and provide both confidence and lessons learned for how to more expeditiously bring its capabilities to less complex airspace environments,” he said.

“We simply could not ask for a better team to lead the NEC effort than Steve, Warren and Mark,” stated RTCA President Margaret Jenny. “Their collective skills and expertise coupled with their ability to work together and lead a large and disparate group to find common ground, continues to be instrumental in the success of the Committee, in recommending ways to improve operations in the NEC.”

In their own right, each of the leaders expressed their optimism at the prospect of industry cooperation in the NEC. Each felt that the work already begun by RTCA, industry leaders, and the FAA was a testament to what the aviation industry can and will accomplish in the NEC. “This joint RTCA-FAA NEC initiative has already achieved incredible results, largely because of the focus and dedication of hundreds of people,” Steve concluded.
ENVIRONMENTAL TESTING

SC-135 met in late April at RTCA Headquarters. The Committee had three days of Working Group (WG) meetings before holding their Plenary on the final day. The Ground Station Environment WG is completing a new document to provide environmental test conditions to qualify equipment to be installed in ground stations. In addition, Section Change Coordinators hosted sessions to review proposed changes to include Revision H for DO-160, Environmental Conditions and Test Procedures for Airborne Electronic/Electrical Equipment and Instruments.

During the Plenary, SC-135 worked to harmonize the accepted change proposals with representatives from EUROCAE WG-14. A new process is now in place to coordinate all change proposals raised against either DO-160() or ED-14() between both groups. The update to DO-160G is expected to be published in 2022. The new document for Ground Station Environment testing is expected to be complete in 2020.

NAVIGATION EQUIPMENT USING THE GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS)

SC-159 met and completed their Final Review and Comment (FRAC) resolution on a new GNSS Dual-Frequency Antenna Minimum Operational Performance Standards (MOPS) for Airborne Equipment. The document is being presented for and publication approval at the June Program Management Committee meeting.

The group is also scheduled to release an update to DO-235C, The L1 Interference Environment Report, in late 2018.

Details of the deliverables can be found in the Terms of References on the SC-159 web page.
STAFF SPOTLIGHT: KA’NIKA EVANS

RTCA’s newest staff member is Ka’Nika Evans, who joined the organization in January of this year. Ka’Nika is the Mission Support Coordinator, and supports the Committee meetings, manages the Committee management website (Workspace), and the RTCA website.

When asked how she came across this opportunity with RTCA, she said that it felt like an ideal situation to expand her horizons. “I’d been looking to switch careers and began an online search when I came across RTCA,” Ka’Nika said. “I’d never worked in aviation and thought this would be a great learning experience and a chance to gain knowledge in the field.”

As a mother of two, Ka’Nika never misses an opportunity to spend time with family and friends. Working at a relatively small organization like RTCA, she said, gives her a sense of camaraderie and family to help her feel right at home with the company. As well, the opportunity to meet so many different people from all over the globe keeps her job interesting.

Asked if she would like to thank anyone who influenced her at RTCA, she said she couldn’t pick just one person. “I would like to thank the entire staff at RTCA for helping me adjust and get acclimated so quickly,” Ka’Nika said. “I’ve learned so much here in such a short amount of time, even the members have been welcoming.”

“We are pleased to have someone with Ka’Nika’s experience, who understands the importance of serving the members,” said RTCA President Margaret Jenny. “She plays a vital role in advancing RTCA’s committee work and our outreach efforts.”

As she works on preparations for the RTCA Symposium, Ka’Nika says she is excited to meet more of RTCA’s members and sponsors. She’s especially looking forward to the Awards Luncheon, which she has been working on, to meet and congratulate the prestigious award winners.

Ka’Nika can be reached at 202-330-0669 or kevans@rtca.org.

STANDARDS FOR AIR TRAFFIC DATA COMMUNICATION SERVICES

SC-214 met and approved the release of DO-224D, **Signal-In-Space MASPS For Advanced VHF Digital Data Communications Including Compatibility with Digital Voice Techniques**, for Final Review and Comment (FRAC). The document is expected to be presented for approval and publication at the September Program Management Committee (PMC) meeting.

The group also approved the joint release, with WG-92, of DO-281C/ED-92C, **MOPS for Aircraft VDL Mode 2 Physical Link and Network Layer**, for FRAC and is also expected to be presented in September to the PMC.
Adams Communication & Engineering Technology, Inc.
Waldorf, Maryland USA
Jessica Patrick

Adams Communication & Engineering Technology, Inc. provides systems, products, and solutions in information systems, healthcare systems, aerospace, electronics, and technical services to government and commercial customers worldwide. The company offers defense solutions that include products, services, and systems integration in the areas of intelligence, surveillance and reconnaissance; sensor technologies; security; advanced communications; electronic warfare; signal intelligence; cyber; avionics; training systems; satellite communications; weapon control systems; and unmanned technologies. The company also provides systems engineering and software engineering technical services; medical information technology solutions; solutions for intelligence, military, and federal communities; and communications electronics systems and equipment, including command, control, communications, computers, intelligence, surveillance, and reconnaissance solutions to army clients. In addition, it offers installation and maintenance of communications systems in vehicles and aircraft.

AeroLEDs Safety of Flight Design
Boise, Idaho USA
Nate Calvin

AeroLEDs was founded out of necessity to fill a void of high-output/low-power applications for the Experimental/ Special Use aircraft with limited electrical system capabilities. With conventional lighting (or ‘legacy systems’), the light output varies with input voltage which decreases dramatically at low engine power settings, thus making the landing lights too dim during the final segments of the landing procedure. LED’s allow consistent light output at various voltage levels, which initiated the discussions about using Light-emitting diode (LED) technology to create aircraft LED landing lights, aircraft LED strobe lights, and LED position lights to greatly reduce current draw and maintenance, by eliminating bulb replacements. Using the combined experience of aerospace industry knowledge and experience, AeroLEDs' path has been forged.

Aishton Ltd.
Hellertown, Pennsylvania USA
Boris Stefanov

Aishton Ltd. provides best-in-class fiber-optic sensing systems for industrial applications. They offer robust and reliable solutions for safeguarding and monitoring critical infrastructure facilities and installations.

Apogee Worx LLC
Ogden, Utah USA
Steve Polard

Apogee Worx provides aviation engineering services as well as MRO for commercial and military customers.

Armasuisse
Bern, SWITZERLAND
Christian Jaeggi

Armasuisse is the Competence Center for Procurement, Technology and Real Estate within the Federal Department of Defence, Civil Protection and Sport (DDPS).

Further key tasks of the department are the Defence sector and five federal offices: General Secretariat, Federal Intelligence Service, national topography office (swisstopo), Civil Protection and Sports.

CTI Consulting
Gaithersburg, Maryland USA
Trenton Higareda

CTI is a prominent security consulting, planning, and design corporation. CTI’s security experts, specialists, and engineers have provided high tech security and operational/programmatic solutions for federal, state, and city governments, major corporations, and the aviation industry. CTI is a woman, minority owned corporation certified by the US Small Business Administration and the US Department of Transportation as a Small Disadvantaged Business Enterprise. Headquartered in Gaithersburg, Maryland, CTI has regional offices in Mission, Texas and Chicago, Illinois.

CTI’s status as a woman, minority owned corporation enables us to meet any project DBE percentage requirements. CTI can serve as the minority component or as the Prime Contractor – either way, our participation will strengthen any team and our status will ensure that any project DBE goals are met or exceeded. CTI is certified as a DBE in many locations across the country and is in the process of becoming certified in many more.

CTI has extensive and comprehensive knowledge and experience in all areas of security, including vulnerability assessments, training, counterterrorism support, design of security systems, and emergency plan development.

f.u.n.k.e. AVIONICS GmbH
Buchloe, Bavaria GERMANY
Thomas Wittig

The f.u.n.k.e. AVIONICS GmbH is an approved aerospace equipment manufacturing and maintenance company (EASA Part 21G and Part 145) that develops, manufactures and markets avionics and avionics system solutions in the areas of communications, navigation and display. For the general aviation market, the company offers the TRT800 (Mode S Transponder) and ATR833 (Radio) product lines. Ground radio applications can be used with the
New Members (continued)

FSG90 series. Deliveries of these products are made directly to European aircraft manufacturers as well as through an extensive worldwide dealer network. Customer-specific avionics devices and system solutions are realized on behalf of well-known system companies such as Airbus, Lufthansa Technik or Thales Alenia Space, as well as for public clients such as Eurocontrol or the European Space Agency (ESA).

HF Designworks
Boulder, Colorado USA
Scott Scheff

HF Designworks is a User Interface (UI) Design, System Safety Analysis, and Software Development company with a focus on making technology easier and safer for people to use.

Honda R&D Americas, Inc - Aircraft Engine Division (HRA-BUR)
Burlington, North Carolina USA
Madhava Walpole

Aircraft engine R&D Division of Honda R&D Americas, Inc. primarily supports Honda Aero Inc.
Honda Aircraft Engine R&D Center has been striving to offer the best-in-class aircraft engine starting from compact design, light weight, premium performance, and environmental ethics gas turbine engine for business jets.

From the Center foundation in 2004, HF120 Engine, jointly developed with GE Aviation, received Type Certification from the Federal Aviation Administration in December 2013. The engine production launched in their Honda Aero Inc. headquarters in North Carolina in 2014.

Natilus, Inc.
Richmond, California USA
LZ Zhang

Natilus' mission is to organically design, develop, and manufacture large scale cargo drones with payload capacity ranging from 2-tonne to 130-tonne. Their vision is to supplement existing cargo fleets from manufacturers such as Boeing and Airbus, with a new mode of transportation that will achieve 30-50% savings in freight cost. Currently, Natilus is working with the Federal Aviation Administration (FAA) to certify testing of their first prototype drone, a 30-ft wingspan composite framed seaplane, with Maximum Take-Off Weight (MTOW) of 2300 lbs. The FAA has already approved their testing airspace above the San Pablo Bay, just north of San Francisco. With venture capital funding from the Silicon Valley, Natilus is at its early stage of research and development, both in drone design and manufacturing, as well as a proprietary full stack flight control system, from Ground Control Station to on-board autopilot.

Near Earth Autonomy, Inc.
Pittsburgh, Pennsylvania USA
Marcel Bergerman

Near Earth Autonomy is creating a future where autonomous flight is commonplace and safe. Their work enables a range of unmanned aircraft (i.e., sub-meter to full scale) to operate across multiple applications.

Near Earth Autonomy works with customers to provide flight-proven core technologies that realize their inspection and mobility needs. Applications include mapping a field, inspecting a building, or enabling an aircraft to navigate safely.

SAS Flying Whales
Suresnes, FRANCE
Hakan Tipirdamaz

FLYING WHALES is a French company established to develop and industrialize a 60 ton Large Capacity Airship. The development of this solution is first to enable the French Forestry Agency to increase large volumes of timber extraction from land-locked areas. This solution, which will offer very low operating costs and almost no environmental impact, also targets the large market of special transportation, and logistics & freight market in countries with transport infrastructure deficit.

TBV Associates LLC
Leavenworth, Kansas USA
Stephen Morton

TBV Associates is dedicated in helping to develop safe and correct software in accordance with the guidance of DO-178B/ED-12B and DO-178C/ED-12C. Their expertise in process design, tool evaluation and qualification, and technical document review and editing can be invaluable in the development of airborne software.

TBV Associates’ DERs can review software planning, development, verification, and final data, perform all Stage of Involvement (SOI) reviews, liaise with the certification authority, and approve or recommend data as appropriate.

TriSoft
Austin, Texas USA
James Knox

TriSoft provides the marketing and development of operating systems, plus support software for a variety of microcomputer users.

TriSoft’s capabilities include: Custom designed electronic hardware/software systems and equipment, embedded processor applications, Communications and security designs using data compression and expansion, time domain multiplex (TDM), or collision detection mutual avoidance (CDMA). Advanced military systems including, countermeasures systems integrated with warning and detection sensors, automated military/commercial test equipment, Graphics and display hardware/software design and development, Simulation and analysis of complex systems, Expert witness for civil and criminal cases, System design, optimization, and upgrades, System development, simulation, and integration and System installation and test at the customer’s site and Documentation and training manuals.

TriSoft can assist in software development for existing systems or write special application software for evolving requirements. Software may be written in high order languages such as C, ADA, PASCAL, FORTRAN, and HTML. Documentation can be provided anywhere from minimal operating instructions to full DOD-STD-2167A depending on the desires of the customer and the product use.
SC-147 met jointly with EUROCAE WG-75 in May at RTCA Headquarters. The Committee conducted a week of Final Review and Comment (FRAC) resolutions on two new documents, *Volume I MOPS for ACAS Xa/Xo*, and the accompanying, *Volume II Algorithm Design Description (ADD)*. Under the guidance of the committee Co-Chairs Stu Searight (FAA), Ruy Brandao (Honeywell), and WG-75 Co-Chair Bill Booth (EUROCONTROL), as well as the invaluable assistance from Committee Member Walter Bender (JHU APL). The Committee discussed a large portion of the 1,000+ comments and addressed all “non-concur” and “high” comments with consensus solutions, and voted to accept the solution plan going forward. The group will officially close FRAC, and refer the two documents to the Program Management Committee meeting in September for approval. The publication of the documents are scheduled for the first quarter of 2019.

ACAS Xa has been developed as a TCAS II-like system, designed to provide more appropriate alerts and collision avoidance guidance for today’s airspace. The ACAS Xa MOPS also includes ACAS Xo functionality, which provides the ability for a flight crew to designate an aircraft for which operational specific alerting criteria can be applied.

Upon completion of the two volumes discussed above, SC-147 will reconfigure itself to focus on the ACAS-Xu, a version of the ACAS system tuned for unmanned aircraft systems that is currently under development.
SC-230 met in early May to complete the Final Review and Comment (FRAC) resolution on DO-220A Change 1, *MOPS for Airborne Weather Radar Systems*, and DO-213A Change 1, *MOPS for Nose-Mounted Radomes*. Both documents are being presented for approval at the June Program Management Committee (PMC) meeting.

The Committee also approved a Terms of Reference (TOR) revision for presentation at the June PMC meeting to create two new MOPS: Detection of High Altitude Ice Water Conditions using Airborne Weather Radar Systems, and Airborne LIDAR Systems.

COMMITTEE
SC-230, Airborne Weather Detection Systems

CO-CHAIRS
Jeff Finley, Rockwell Collins, Inc.
Dawn Gidner, Honeywell International, Inc.

NEXT MEETING
November 6-7, 2018, at RTCA, Washington, DC

Committee members at RTCA Headquarters

Members visiting the RTCA Library, and each holding SC-230 documents
SC-224 met and completed their Final Review and Comment (FRAC) resolution on DO-230I, *Standards for Airport Security Access Control System*. The document is being presented for approval and publication at the June Program Management Committee meeting.

They’re now working on DO-230J, to update credentialing, procurement, biometrics and video sections. This document is expected to be published Fall 2019.

COMMITTEE
SC-224, Airport Security Access Control Systems

CO-CHAIRS
Alan Paterno, Transportation Security Administration
Christer Wilkinson, AECOM Technology Solutions

NEXT MEETING
July 12, 2018, at RTCA, Washington, DC

Members of SC-224 meeting at RTCA Headquarters (left to right) Simon Lai, MWAA; DJ Neric, FAA (GAR); Karan Hofmann, RTCA; Larry Chandler, MWAA; Gary Davis, MWAA; and Dr. Jonathan Branker, FAA
SC-213 met jointly with EUROCAE WG-79 in Cologne, Germany in April. During the Plenary, the Committee reviewed the comments received during Open Consultation/Final Review and Comment (OC/FRAC) for a new document, Combined Vision Systems for Rotorcraft. They also approved initiating OC/FRAC on another new document, Safety and Performance Requirements (SPR) for Vision Systems for Takeoff. The status of both documents will be reviewed at the next plenary and are expected to be published in 2018.
RTCA, Inc. has teamed up with The MITRE Aviation Institute to offer high quality and relevant training for the aviation industry in understanding the requirements and parameters for avionics software development necessary to obtain FAA certification.

The two world-class organizations are using their collective experience and expertise to provide training on the standards and recommended practices contained in the DO-178C, Software Considerations in Airborne Systems and Equipment Certification.

In addition to the comprehensive course manual developed by the experts at The MITRE Aviation Institute, each training course attendee will receive the latest standards developed over a six-year period by RTCA Special Committee 205.

The course is led by instructors who provide a thorough understanding of the requirements and the applicability of DO-178C; the fundamental techniques of software development considerations in airborne systems and equipment certification; and an introduction and overview of Software Tool Qualification Considerations, Formal Methods Supplement to DO-178C, Model-Based Development and Verification Supplement to DO-178C, and Object Oriented Technology and Related Techniques Supplement to DO-178C.

As an adjunct to DO-178C, this course will provide the background and scope on the four documents supporting DO-178C:

- **DO-330, Software Tool Qualification Considerations**
- **DO-331, Model-Based Development and Verification Supplement to DO-178C and DO-278A**
- **DO-332, Object-Oriented Technology and Related Techniques Supplement to DO-178C and DO-278A**
- **DO-333, Formal Methods Supplement to DO-178C and DO-278A**

Attendees will receive detailed instruction on DO-331, covering the objectives, activities, explanatory text and software life cycle data that should be applied when model-based development and verification are used as part of the software life cycle.

In addition, the training will cover the systems requirements linkage to the DO-178C and Supplement processes through an explanation of the interface to ARP 4754A, Guidelines for Development of Civil Aircraft and Systems.

Unless otherwise noted, all training courses will take place at RTCA Headquarters, located conveniently in downtown Washington, DC. For additional information, please visit www.rtca.org or email training@rtca.org.
DO-160G, ENVIRONMENTAL CONDITIONS AND TEST PROCEDURES FOR AIRBORNE EQUIPMENT, TRAINING COURSE

Oct 1-4 at WSU
Dec 11-14 at RTCA

RTCA, in partnership with Wichita State University’s National Institute for Aviation Research (WSU-NIAR), offers high quality training covering RTCA’s DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment. The course will provide an understanding of the use of DO-160G and how it fits in with the greater picture of requirements, design, certification and TSOs.

Course participants will gain a clear and relevant understanding of the applicable FAA regulations, advisory material, certification procedures, design approaches/trade-offs, inspection and conformity requirements, as well as details of the necessary parts of a test plan, test report, compliance plan and compliance report. A strong focus is placed on the reduction of risk, cost and schedule throughout the design/certification process, by use of targeted design and increased first-pass success on design and testing. In addition to a comprehensive course manual, each training course attendee will receive a copy of RTCA’s DO-160G, supporting material, and will participate in real-world exercises applying the knowledge learned from the class.

DO-254, DESIGN ASSURANCE GUIDANCE FOR AIRBORNE ELECTRONIC HARDWARE, TRAINING COURSE

September 10-12
December 3-5

RTCA is hosting a three-day training course, tailored specifically to design/verification engineers and project/certification managers requiring DO-254 compliance.

This three-day course will:

• Provide an overview and application of RTCA DO-254, as defined by current FAA and EASA guidance in airborne electronic systems.
• Describe how to apply the DO-254 lifecycle and supporting processes; understand system safety assessments and the design assurance level (DAL); and set up a project correctly through proper planning and standards.
• Present techniques and writing requirements for electronic hardware, and how to optimize requirements for verification processes.
• Describe how to efficiently and effectively verify requirements with simulation and hardware tests.
• Address specific considerations for programmable logic devices (PLDs) such as FPGA/ASIC versus all electronics; commercial off-the-shelf (COTS) components usage; and tool assessment and qualification.

*Unless otherwise noted, all training courses will take place at RTCA Headquarters, located conveniently in downtown Washington, DC. For additional information, please visit www.rtca.org or email training@rtca.org.
SC-236 met in joint Plenary with EUROCAE WG-96 in Toulouse, France, hosted by Airbus. The Committee is working to create a joint standard with WG-96 to define the Minimum Operational Performance Standard (MOPS) to use WAIC in the 4200-4400 MHz band.

During the meeting, progress was made to identify parameters shaping the MOPS requirements needed to ensure that multiple WAIC systems can function concurrently with Radio Altimeters in the 4200 - 4400 MHz band.

The Committee will request that the Program Management Committee add new scope to the Terms of Reference to create Minimum Aviation System Performance Specification (MASPS) for Coexistence of Wireless Avionics Intra-Communication Systems within 4200-4400 MHz, to be delivered in March 2019.
RTCA ONLINE STORE

Your one-stop resource center for documents—
many of which serve as a basis for FAA Certification.

For additional information and to order documents, please visit rtca.org

Five Most Popular Documents

DO-178C, Software Considerations in Airborne Systems and Equipment Certification
DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment
DO-254, Design Assurance Guidance for Airborne Electronic Hardware
DO-330, Software Tool Qualification Considerations
DO-365, Minimum Operational Performance Standards (MOPS) for Detect and Avoid (DAA)
AGENDA

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30-5:00</td>
<td>Registration</td>
</tr>
<tr>
<td>7:30-8:30</td>
<td>BREAKFAST</td>
</tr>
<tr>
<td>8:30-9:05</td>
<td>Introduction and Keynote</td>
</tr>
<tr>
<td>9:05 – 9:55</td>
<td>NextGen in the Northeast Corridor: Let’s Do This!</td>
</tr>
<tr>
<td>9:55-10:15</td>
<td>NETWORKING BREAK</td>
</tr>
<tr>
<td>10:15-11:05</td>
<td>Integrating Drones into the Airspace: What’s Next?</td>
</tr>
<tr>
<td>11:05-11:45</td>
<td>Global Leadership, Global Harmonization</td>
</tr>
<tr>
<td>11:45-12:10</td>
<td>Moving Civil Aviation Authorities to Risk-based Regulations</td>
</tr>
<tr>
<td>12:10-12:30</td>
<td>NETWORKING BREAK</td>
</tr>
<tr>
<td>12:30 – 2:00</td>
<td>ANNUAL AWARDS LUNCHEON: Recognition of Excellence - A Conversation with FAA’s Ali Bahrami</td>
</tr>
<tr>
<td>2:15-3:05</td>
<td>Breaking the Barriers to NextGen: Equipage, Environment and Funding</td>
</tr>
<tr>
<td>3:05-3:45</td>
<td>Assessing Risk of Drones: National Academies Report</td>
</tr>
<tr>
<td>3:45-4:05</td>
<td>NETWORKING BREAK</td>
</tr>
<tr>
<td>4:05-4:45</td>
<td>Technical Performance Standards: Paving the Way for Integrating UAS in the NAS</td>
</tr>
<tr>
<td>4:45-5:15</td>
<td>What’s Happening in the Autonomous Automobile World?</td>
</tr>
<tr>
<td>5:30 – 7:00</td>
<td>INDUSTRY RECEPTION</td>
</tr>
</tbody>
</table>

Join with 300+ Aviation Industry Professionals - Register Today

http://symposium.rtca.org | 202-833-9339 | symposium@rtca.org
June

June 4-8
SC-223, Internet Protocol Suite (IPS) and AeroMACS
Hosted by EUROCAE
Saint Denis, France

June 11-15
SC-206, Aeronautical Information and Meteorological Data Link Services
Hosted by AOPA
Frederick, MD

June 12
RTCA Symposium
Hosted by RTCA
Hyatt Regency - Arlington, VA

June 18-22
SC-217, Aeronautical Databases
Hosted by RTCA
Washington, DC

June 26-27
SC-222, AMS(R)S
Hosted by RTCA
Virtual

June 26-28
DO-178C Training
Hosted by RTCA
Washington, DC

June 29
Supplements to DO-178C Training
Hosted by RTCA
Washington, DC

July

July 12
SC-224, Airport Security Access Control Systems
Hosted by RTCA
Washington, DC

July 31
Hosted by RTCA
Virtual

August

August 20-24
SC-236, Standards for Wireless Avionics Intra-Communication System (WAIC) within 4200-4400 MHz
Hosted by RTCA
Washington, DC

August 27-31
SC-229, 406MHz Emergency Locator Transmitters (ELTs)
Hosted by EUROCAE
Saint Denis, France

September

September 13
SC-224, Airport Security Access Control Systems
Hosted by RTCA
Washington, DC

September 17-21
SC-206, Aeronautical Information and Meteorological Data Link Services
Hosted by RTCA
Washington, DC

September 20
PMC, Program Management Committee
Hosted by RTCA
Washington, DC

September 24-28
SC-223, Internet Protocol Suite (IPS) and AeroMACS
Hosted by RTCA
Washington, DC